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ABSTRACr Computer simulation is used to examine a simple flagellar model that will initiate and propagate bending
waves in the absence of viscous resistances. The model contains only an elastic bending resistance and an active sliding
mechanism that generates reduced active shear moment with increasing sliding velocity. Oscillation results from a
distributed control mechanism that reverses the direction of operation of the active sliding mechanism when the
curvature reaches critical magnitudes in either direction. Bend propagation by curvature-controlled flagellar models
therefore does not require interaction with the viscous resistance of an external fluid. An analytical examination of
moment balance during bend propagation by this model yields a solution curve giving values of frequency and
wavelength that satisfy the moment balance equation and give uniform bend propagation, suggesting that the model is
underdetermined. At 0 viscosity, the boundary condition of 0 shear rate at the basal end of the flagellum during the
development of new bends selects the particular solution that is obtained by computer simulations. Therefore, the details
of the pattern of bend initiation at the basal end of a flagellum can be of major significance in determining the properties
of propagated bending waves in the distal portion of a flagellum. At high values of external viscosity, the model oscillates
at frequencies and wavelengths that give approximately integral numbers of waves on the flagellum. These operating
points are selected because they facilitate the balance of bending moments at the ends of the model, where the external
viscous moment approaches 0. These mode preferences can be overridden by forcing the model to operate at a
predetermined frequency. The strong mode preferences shown by curvature-controlled flagellar models, in contrast to
the weak or absent mode preferences shown by real flagella, therefore do not demonstrate the inapplicability of the
moment-balance approach to real flagella. Instead, they indicate a need to specify additional properties of real flagella
that are responsible for selecting particular operating points.

INTRODUCTION

The mechanism of oscillation in flagella and cilia is still
unknown. In one suggested type of oscillatory mechanism,
developed from ideas of Kinosita and Kamada (1939) and
Machin (1958; 1963), the active sliding mechanism that
generates bending is regulated by a result of active sliding,
such as the curvature of the flagellum (Brokaw, 1971;
1972a). Oscillation will result if there is a delay in this
feedback loop. A delay is inevitable in a sliding filament
system because bending depends upon differences in slid-
ing rate at different positions along the length, rather than
sliding rate itself (Brokaw, 1971; 1972a; Shingyoji et al.,
1977).

This oscillatory mechanism has been examined pre-
viously by computer simulation methods that solve the
nonlinear, fourth-order, partial differential equation that is
required to analyze the movement of an elastic filament in
a viscous medium (Brokaw, 1972b; Hines and Blum, 1978;
etc.). These methods have been used to show that flagellar
models in which the active shear moment per unit length is
regulated locally by flagellar curvature can initiate and
propagate bending waves with features similar to real

flagellar bending waves (Brokaw, 1972b). The response of
these models to changes in the viscosity of the external
medium shows a preference for particular modes of oscilla-
tion that is much stronger than is seen with real flagella
(Brokaw, 1972c; etc.). The present paper attempts to
explain this discrepancy. The analysis, like most previous
flagellar modeling, is limited to bending in a plane, and
does not attempt to explain the constraints that are respon-
sible for generation of planar bending waves by flagella.

ANALYSIS

Moment Balance Analysis of Flagellar
Bending

This analysis assumes that bending of a real flagellum
represents the solution of a moment balance equation that
balances active bending moments, MA(s, t) generated by
an internal active sliding process against the elastic and
viscous resistive moments, ME(s, t) and Mv(s, t) resulting
from the internal structural resistances of the flagellum
and the external viscous resistances of the fluid in which it
is moving. The moment balance equation for a flagellum
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can be written

MA(S, t) + ME(S, t) + MV(S, t) = 0. (1)

In this equation, t represents time and s represents distance
measured along the length of a flagellum, from the basal
end. To use Eq. 1, the moments must be defined as
functions of a variable such as the curvature, K(S, t), which
completely describes the configuration of the flagellum as
a function of time, and therefore completely describes its
bending behavior. These functions include derivatives and
integrals of Kc(S, t), such that Eq. 1 becomes a fourth-order
partial differential equation.

Methods for numerical solution of this equation to
obtain K(S, t) have been developed in previous work (Bro-
kaw, 1 972b; Hines and Blum, 1978). Most of the complex-
ity of these procedures results from the integrations needed
to obtain Mv.

Moment Balance with a Realistic Active
Shear Process

One of the important characteristics of the best-known
biological active shear system, skeletal muscle, is a force-
velocity relationship that describes the decrease in force
generated by the muscle as the shortening velocity
increases. Some evidence indicates that the active shear
system in flagella has similar characteristics (Brokaw,
1975b). The force-velocity behavior can be generated by
detailed models for cross-bridges between the sliding
microtubules of flagella, with explicit consideration of the
kinetics of cross-bridge attachment and detachment, and
these detailed models can be incorporated into flagellar
models (e.g., Hines and Blum, 1979; Brokaw, 1982). To
avoid the complications of such detailed models, I will
introduce here a simpler prescription for the properties of
an active shear system that is intended to mimic the
properties of a cross-bridge system. Three assumptions are
required. (a) In the absence of sliding, the active shear
moment per unit length, m, has a constant value mA. (b) In
response to a very rapid change in shear, the moment-
generating system behaves as a simple elastic shear resis-
tance. This shear resistance mimics the stiffness of
attached cross-bridges, which do not have time to detach
and reattach during the rapid shear change. This shear
resistance is determined by a parameter ESCB that is
independent of mA. The actual shear resistance is the
product of ESCB and mA, and ESCB is therefore equal to the
reciprocal of an amount of shear that will reduce the active
shear moment to 0. ESCB = 4 corresponds to reduction to 0
moment by a shear step of 0.25 rad, or an average of -10
nm of sliding between tubules. (c) When m * mA, for
instance following a rapid shear change, there is a first-
order recovery process by which m approaches mA with a
rate constant k,. This system can be described by the
following ordinary differential equation

dm/dt = -ESCB ImA I + kl (mA- m), (2)

where c = du/dt is the shear rate. For constant shear rate,
with mA> 0, there is a steady-state solution

m = mA(l - EscB a/kl). (3)

This equation gives a linear decrease in m with increasing
shear rate, and m = 0 when the shear rate = kI/EscB.

For a time interval At in which the shear rate is constant,
the solution to Eq. 2 can be written

m(t + At) = m(t) + [mA - m(t)] ( - e-)

-I|MAI|ESCB f (1 - e I)k- (4)

Using the boundary condition of no sliding between flagel-
lar doublet microtubules at the basal end of the flagellum,
a(O) = 0, the shear rate, &, can be obtained from

a (s) = kds, (5)

where k = dK/dt is a local rate of bending.
Using the boundary condition of no restriction on sliding

between flagellar doublet microtubules at the distal end of
the flagellum (s = S) gives MA(S) = 0, and dMA/ds =
-m (Brokaw, 1971) allows MA(s, t + At) to be obtained
from Eq. 4 by integration along the length. Because of Eq.
5, MA(s, t + At) will be a function of K(s, t).

In the simplest situation, containing only a linear elastic
bending resistance EB, with a straight "rest position,"

ME(S, t) = -EB K(S, t),

and

ME(s, t + At) = -EB K(S, t) - EB KAt. (6)

By inserting ME(S, t + At) and MA(s, t + At) into Eq. 1, a
fully implicit solution can be obtained for the values of K
that will achieve moment balance at t + At. The nu-
merical methods for obtaining this solution at intervals, As,
along the length of the flagellar model are based on the
methods of Brokaw (1972b; 1982). The term in Eq. 4 that
contains a is treated in the same manner as a viscous shear
resistance.

A Simple Control Procedure Leads
to Oscillation and Bend Propagation

In previous work using computer simulations to examine
flagellar models, several procedures for control of the
active shear moment system have been proposed that lead
to oscillation and bend propagation. One of the simplest,
based on models examined by Brokaw (1980; 1982), allows
the constant mA throughout each segment along the length
of the flagellar model to have a value of either + m. or
-Mo. The value ofmA is switched between these two values
when the local curvature of the flagellum passes critical
values. When the curvature falls below -Ko, mA becomes
+ MO, and when the curvature rises above + K, mA becomes
- Mo. In thejth segment mA(j) is controlled by the mean of
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the values of K(j) and K(j - 1) at the ends of the segment,
using estimated values of K at the midpoint of the next time
step, obtained from K(t) + 1/2 [K(t) - K(t - At)].

Fig. 1 illustrates results obtained for a flagellar model
containing this control procedure. Stable oscillation and
bend propagation are obtained from this simple model
containing only an elastic bending resistance and an active
shear process, in the absence of external viscous resistance
or any other internal resistances. However, this model has
a serious defect, associated with the boundary condition
that K = 0 at s = S. In the joint closest to the distal end of
the model, the curvature will never reach KO if the active
moment generated within the last segment is <EBKO. This
active moment will depend upon mo and As. If mo and As
are too small relative to EB and KO, the last segment will
remain in the state in which it was started, and no
oscillation will occur. This defect will gradually propagate
towards the basal end of the flagellum, because if K(n - 1)
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FIGURE 1 Behavior of a simple flagellar model. The parameters are
EB = 2 x 108 pN nm2, mO = 20 pN, k, - 1,000 s-', ESCB 4, and KO =
0.0002 rad nm-'. The flagellum is 40 jm in length, and oscillates with a
frequency of 31 Hz. The upper panel shows the configuration of the
model in the x, y, plane at time intervals separated by 1/4 beat cycle. The
basal end of the model has been arbitrarily maintained at fixed position
and orientation. The middle panel shows shear curves giving the angular
orientation of the flagellum as a function of length, at times corresponding
to those in the upper panel. The lower panel shows curves for the
curvature (solid line) and the active shear moment (dashed line) as
functions of length, at one time in the beat cycle. The active shear moment
curves are scaled so that the point on the ordinate representing a
curvature of 0.4 rad sm-' corresponds to a shear moment of 20 pN.
Computations were performed on a microcomputer (9816; Hewlett-
Packard Co., Palo Alto, CA), using HP-Pascal with 64-bit floating point
arithmetic. The length of the flagellar model was divided into 60
segments, and 160 time steps were used per cycle of oscillation.
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FIGURE 2 Effect of elastic bending resistance, EB, on the wavelength of
bending waves generated by the flagellar model shown in Fig. 1 (a) in the
absence of external viscosity and (b) at a relative external viscosity of 8,
with a small amount of elastic shear resistance added to the model (see
text).

cannot reach +KO, so that mA(n) remains equal to +mo,
then K(n - 2) will have difficulty in reaching -KO when
MA(n- 1) = -mo, etc. To obtain the results shown in this
paper, it was necessary to minimize this defect by modify-
ing the control of active shear moment in the last segment
and controlling mA(n) by K(n- 1) rather than by the mean
value of K(n - 1) and K(n). The defect can be completely
controlled by further modifications of this type. However,
because of this defect, this particular form of curvature
control, while useful for the purposes of this paper, is not a
likely model for the control process in real flagella.

Changes in the value of the elastic bending resistance,
EB, cause a smooth variation in the wavelength of the
motion. This change in wavelength is accompanied by an
inverse change in the frequency of oscillation, but the
propagation velocity Vs, equal to the product of frequency
and wavelength, does not remain constant. Over the range
illustrated in Fig. 2 a, Vs increased from 690 ,um s-' at
EB = 1 x 108 pN nm2 to 862,um s-' at EB = 3 x 108 pN
nm'. Computations with other variations of the model
parameters indicate that the ratio, EB/mo, determines the
wavelength, and that the frequency of oscillation is propor-
tional to the maximum steady-state shear rate, kl/EscB.
The amplitude is primarily determined by the value of Ko.
Addition of a realistic value of linear elastic shear resis-
tance, ES, to the flagellar model has a relatively small
effect on the steady-state solution shown in Fig. 1. With
ES = 10 pN at EB = 1 x 108 pN nm2, the wavelength
increases from 15.0 ,tm (Fig. 2 a) to 15.8 ,um. The tran-
sient behavior of the flagellar model when started from a
straight position by activating mA = +mo throughout the
length of the flagellum is more realistic when the flagellar
model contains elastic shear resistance (not shown).

Analytical Examination of Oscillation
Since the flagellar model examined above does not contain
any complicated external viscous terms, an analytical
examination of some of its properties is possible. In a region
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of the flagellum where mA is constant and equal to +mi,
Eqs. 1 and 6 give

m=-EBdK/ds. (7) 80
N

In the limiting case where k, and ESCB are very large, Eqs. I
3 and 7 give 6060

-EB dK/ds =mO (1 -EscB a/k). (8) 0
C

If we assume that there is a solution for a propagated wave o 40
of curvature with constant properties, then, since K = c

da/ds, L
a V20

a= -VS K, (9)

where Vs is the wave propagation velocity. This leads to a
first-order differential equation for curvature

(EB/mO)dK/ds + (Vs EscB/kl)K =- 1.

Cl L
0

(10)

EB and m0 enter into the balance of bending moments only
as the ratio EB/mr, and dimensional considerations then
suggest that this ratio is likely to determine the wavelength
of the solutions. The solution of Eq. 10 is a standard
exponential relationship between K and s. The region of
constant MA is one half-wave in length, in which K goes
from +KO to -K.. This leads to

In[(I + KO VsESCBk)/(1 - KO VSESCB/k1)]
= (mO Vs ESCBL)/(2 EBkl). (11)

Since Vs equals the product of frequency, f, and wave-
length, L, this solution yields a curve in the f, L plane,
shown by the upper curve in Fig. 3.

This limiting case for large k, and large ESCB cannot be
compared directly with the flagellar computations using
realistic vallies of k, and ESCB. To use ESCB = 4 and k, =
1,000, as in the model used to obtain the results shown in
Figs. 1 and 2, it is necessary to go back to the two-point
boundary value problem defined by Eqs. 2 and 7 and
perform a numerical integration of both m and K, starting
with K = +K.. When K reaches-K,, the final value of m is
compared with the initial value of m. Starting values of m
are tried until a value is found such that the final value of
m is equal to minus the starting value of m. This procedure
is repeated for various values of Vs in order to construct the
family of solutions corresponding to the lower solid curve in
Fig. 3. This is a curve with the same general shape as the
curve for the limiting case, but with lower values off for a
given L. Further computations with this procedure con-
firmed that the results approached the limiting case as
higher values of ESCB and k1 were used.

Fig. 3 also shows a point corresponding to the values off
and L obtained from the computation for a flagellar model,
shown in Fig. 1. This point lies close to the curve obtained
with the same values of ESCB and k, in Fig. 3.
The analysis leading to the curves in Fig. 3 suggests that

there should be a family of solutions for each choice of the

20 40
Wavelength (pm)

60

FIGURE 3 Solution curves showing allowable combinations of fre-
quency and wavelength for bending wave propagation by a flagellar
model. The upper solid curve is obtained from Eq. 1 1, with EB = 2 x 108
pN nm2, mO = 20 pN, KO = 0.0002 rad nm-', and kl/ESCB = 250 s-'. The
lower solid curve is obtained by numerical integration of Eqs. 2 and 7,
using values of k, = 1,000 s ' and ESCB = 4, as in the model shown in Fig.
1. The dashed curve is the same curve plotted with a twofold expansion of
the wavelength scale. The solid point gives the values of frequency and
wavelength obtained from the computation shown in Fig. 1. The lower
open point gives the values of frequency and wavelength obtained from
the computation shown in Fig. 4.

three parameters EB/Mo, ESCB/kl, and KO. What factors are
responsible for the selection of the particular solution
obtained from the computation shown in Fig. 1? There is a
major difference between the two approaches. Fig. I was
obtained by solving an equation that balances bending
moments; while the curves in Fig. 3 were obtained by
balancing the first derivatives of the bending moments, so
that some boundary conditions at the ends of the flagellum
were ignored.
The boundary condition for 0 shear force at the distal

end of the flagellum also requires that there be 0 curvature
at the distal end. This boundary condition does not appear
to influence the wavelength and frequency of the solution
obtained from the flagellar simulations. Simulations simi-
lar to Fig. 1 were performed with the flagellar length
varied at 2-,um intervals over the range from 32 to 50 ,um.
Although the bending behavior at the distal end of the
flagellum varied, there was no significant variation in the
bending behavior of the basal end and mid-region of the
flagellum, and the wavelength obtained for the propagated
bending waves varied only within the range of 20.9 to 21.4
,um.
The particular solution chosen by the flagellar model

does seem to be sensitive to conditions at the basal end of
the flagellum. One way to demonstrate this is by changing
the control procedure near the basal end so that the
switching of MA in segments 2 to n1 is controlled by K(nl).
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Fig. 4 shows the result obtained with n1 = 4. This result has
values of L = 29.7 ,im andf = 27.5 Hz. A corresponding
solution point and a solution point for n, = 3, giving L =
26.9 andf = 29.8, are shown in Fig. 3 (open circles).
The boundary condition that must be satisfied at the

basal end of the flagellum is a(0, t) = 0. Consequently,
a(O, t) = 0. This condition is incompatible with propaga-
tion of a uniform wave of curvature (and v) described by
Eq. 9. The analytical solution that was based on Eq. 9
assumed a bend of constant length propagating along the
flagellum. Since these bends must be initiated at the basal
end of the flagellum, there must be at least one bend at the
basal end that is continuously increasing in length and total
bend angle. With just one such bend, it is not possible to
satisfy both the boundary condition for 0 shear at the base
and Eq. 9 for bending wave propagation in distal regions of
the flagellum, because the increasing bend angle of the
developing bend requires sliding (a) in the more distal
regions of the flagellum, so that & is not determined by Eq.
9. However, if there are two developing bends at the basal
end that are increasing in angle at equal and opposite rates,
the values of f& in bends distal to these two bends will be
independent of events in the developing bends, so that Eq.
23 can be used in the distal part of the flagellum. This
situation appears to obtain, at least approximately, in real
flagella (Goldstein, 1975; 1976). With this pattern of bend
initiation, the bend closest to the basal end grows to
approximately half its final bend angle in its first half-cycle
of existence and completes its growth during the next
half-cycle.

During most of the period of bend development, the
solution method used to obtain the curves in Fig. 3 is not
applicable to the region of constant mA closest to the basal
end, because the value of curvature at the basal end will be
varying. However, there will be one time point at which the
magnitude of the curvature at the basal end will be equal to
K.. This will be the time at which the sign of mA at the basal
end switches, and a new region is initiated. At this time
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FIGURE 4 Results obtained from computations with a flagellar model
identical to the one in Fig. 1, except for a small change in bend initiation
at the basal end. The active shear moment generated in segments 2, 3, and
4 of the model is controlled by the curvature at the fourth joint.

point, and only at this time point, the solution method will
also be applicable to the region of constant mA closest to the
basal end. However, the length of this region will be less
than that of an active region propagating in the more distal
portion of the flagellar model. This is possible because, as
shown by the curves in Fig. 3, there are two possible values
of wavelength at every frequency at which the model can
operate. The operating point can then be established by the
relative values of the two wavelengths, as determined by
the pattern of bend initiation. In the simplest case, where
both the bend angles and the lengths of the bends grow
linearly during bend development, the length of this devel-
oping bend at the base will be half the length of bends
propagating in the more distal portion of the flagellar
model. Therefore, it might be expected that the flagellar
model would operate at a frequency at which the two
possible values of wavelength differ by a factor of two. This
operating point is indicated by the intersection of the lower
solid curve and the dashed curve in Fig. 3. As indicated in
Fig. 3, the flagellar model of Fig. 1 operates at values of
frequency and wavelength that are reasonably close to the
values predicted by this analysis. It diverges further from
this solution when larger length segments are used for the
computation, or when bend initiation at the basal end is
delayed, as in Fig. 4, to give the results shown by the open
circles in Fig. 3.

Operation in the Presence of External
Viscous Resistance

External viscous resistances are introduced by using resis-
tive-force theory (Gray and Hancock, 1955). The drag
coefficient values have been increased in the light of more
recent hydrodynamic analysis (see Lighthill, 1976; John-
son and Brokaw, 1979). Since the wavelength dependence
of the drag coefficients is weak, constant values for these
coefficients have been used throughout, with a ratio of
CN/CLof 1.8.
The bending moments resulting from external viscous

resistance of the surrounding fluid depend on the rates of
bending of the flagellum via a quadruple integration
procedure (Brokaw, 1970, 1972b). The integration con-
stants required by this procedure are obtained from bound-
ary conditions for the external forces and moments applied
to the ends of the flagellum. Only the case where both ends
of the flagellum are free, so that no external forces or
moments are applied at the ends, is considered here.
Details of the external viscous resistance terms that need to
be used have been given in previous work (Brokaw, 1972b).
Since these terms depend on the values of K(S, t) at the
beginning of a time interval, the external viscous resis-
tances are handled in an explicit rather than an implicit
manner. Since these are viscous terms, this results in
inaccuracy rather than instability of the solution process.
An alternative approach that avoids these inaccuracies is
described by Hines and Blum (1978).

BROKAW Computer Simulation ofFlagellar Movement 637



Figs. 2 b and 5 show the results of computing the
movement of this flagellar model at a relative viscosity of 8,
i.e., an external viscosity eight times higher than the value
normally used for observations of sea urchin sperm flagel-
la, by using a value of 0.0173 N s m-2 for the tangential
drag coefficient, CL. The internal elastic bending resis-
tance, EB, was varied, as in Fig. 2 a, over the range from
0.8 x 108 to 2.9 x 108 pN nm2, with a constant value of mn.
At increased external viscosities the movement of the
model was found to be more stable if a small amount of
internal elastic shear resistance, ES, was included. ES was
given a value of 2.0 pN when EB = 1.0 x 108 pN nm2, and
was varied proportionately as EB was varied. In contrast to
the smooth change in wavelength obtained in the absence
of external viscosity (Fig. 2 a), three stable wavelength
modes were found (Fig. 2 b). Within each of these modes,
the wavelength was nearly independent of the elastic
resistances. Intermediate values of wavelength between
these modes were not stable.
The wavelength mode that is stable from EB = 1.1 x 108

pN nm2 to 2.6 x 108 pN nm2 is illustrated in Fig. 5 b. This
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FIGURE 5 Waveforms obtained at the three stable wavelength modes
identified by the computations summarized in Fig. 2 b. Each panel shows
one cycle of the motion plotted at 1/ cycle intervals, with the motion in the
x, y plane shown above a plot of shear angle as a function of length. (a)
With Eb = 1.1 x 108 pN nm2 and ES = 2.2 pN; the frequency is 22.3 Hz.
(b) With E£ = 1.9 x 108 pN nm2 and Es = 3.8 pN; the frequency is 12.7
Hz. (c) With EB = 2.8 x 108 pN nm2 and Es = 5.6 pN; the frequency is
5.1 Hz. (d) Waveform obtained by driving the oscillation at a frequency
of 16.5 Hz, to obtain a wavelength in between the wavelengths produced
in a and b. EB = 1.2 x 108 pN nm2 and Es = 3 pN. Computations were
performed with the flagellar length divided into 40 segments and with 80
time steps per cycle of oscillation.

1 OOr

101

1

a

0.1 1 10 100

10

Relative viscosity

b

@000:::::.
*::. f

L

0.1 1 10 100

FIGURE 6 Effect of viscosity on parameters of the flagellar model.
Wavelengths are indicated by the solid points, frequencies are indicated
by the open points, and the power (averaged over one cycle), in units of
102 pJ/s, is indicated by the solid line. (a) Free oscillations of the same
model shown in Fig. 5 b, with EB - 1.2 x 108 pN nm2 and ES - 3 pN. (b)
Forced oscillations of a slightly modified model, with EB = 2.0 x 108 pN
nm2, ES - 4.8 pN, mo = 32 pN, and Kj - 1,500 s_'. The frequencies were
chosen so that log (frequency) -1/4 log (viscosity) is constant.

mode has approximately two complete bending waves on
the flagellum. The frequency of oscillation decreases grad-
ually from 13.8 Hz at EB = 1.1 x 108 pN nm2 to 9.7 Hz at
2.6 x 108 pN nm2.

In the lower portion of this range of elastic resistances,
up to EB = 1.6 x 108 pN nm2, a mode with approximately
three complete bending waves is stable (Fig. 5 a). This
mode has a higher frequency of oscillation, decreasing
from 23.2 Hz at 0.8 x 108 pN nm2 to 20.4 Hz at 1.6 x 108
pN nm2. In the region in which two stable modes are
shown, the mode obtained depends upon the initial condi-
tions.
At the upper end of this range of elastic resistances,

beginning at EB = 2.65 x 108 pN nm2, there is one stable
mode with a wavelength of -26.4 Am and frequencies of
-5 Hz (Fig. 5 c).
At EB = 1.2 x 108 pN nm2 the wavelength obtained in

the absence of external viscosity is similar to the wave-
length of the two-wave mode obtained at high viscosity,
and the relative external viscosity can be varied from 0 to
64, with no significant change in the wavelength (Fig. 6 a).
The average power expended against the external viscous
resistance is also plotted in Fig. 6. The maximum power
output is obtained at a viscosity where the frequency of
oscillation has been reduced to half the frequency obtained
in the absence of external viscosity; the active shear system
in this model has a maximum power output at half the
maximum shear rate.

Fig. 7 compares the characteristics of the solutions
obtained at relative viscosities of 0, 1, 8, and 64. The third
row of Fig. 7 shows the relationship between curvature and
active shear moment along the length of the flagellar
model at single time points in the oscillation cycle. The
curvature curves indicate that bends propagate along the
flagellum with approximately the same wavelength
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FIGURE 7 Waveforms obtained from computation of free oscillation of the flagellar model used to obtain the data in Fig. 6 a, shown at
relative viscosities of 0, 1, 8, and 64. At each viscosity, the motion in the x, y plane is shown at the top of the column. The plot labeled curvature
shows only one curve of curvature vs. length, given by the solid curve, for comparison with a curve at the same time in the cycle for active shear
moment per unit length, m, given by the dashed line. The units for m are 50 pN. The plot labeled shear moment gives the bending moments
resulting from integration of the active shear forces and the forces generated by elastic shear resistance. The plot labeled internal moment
gives the sum of the bending moments resulting from shear forces and the bending moment resulting from the elastic bending resistance. This
sum must, therefore, be equal in magnitude to the moment resulting from external viscous resistances. The units for both plots of bending
moments are I05 pN nm; but note that the scale is compressed by a factor of two for the plots at a relative viscosity of 64.

throughout this range of viscosities, although there is some
change in the shape of the bends. On the other hand,
increasing the viscosity causes a dramatic change in the
shape of the curves showing active shear moment along the
length. At low viscosities, the frequency and sliding veloc-
ity are high. In the regions of the bending wave where
sliding is occurring at a near-maximal velocity, the active
shear moment is greatly reduced. Near the trailing edge of
a bend, as the sliding velocity falls, the active shear

moment increases towards its maximal value. As a result,
there is a sharp peak in the trailing portion of the shear
moment curves. This is equivalent to a phase lag between
the curvature curve and the shear moment curve, which
provides part of the phase lag that is needed to achieve
equilibrium between the active shear moment and the
elastic resistances (Brokaw, 1971). At high viscosities, on
the other hand, the frequency and the sliding velocities are
reduced, so that there is little effect of sliding velocity on
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active shear moment, and the active shear moment is close
to its maximal value throughout the bend. The effective
phase lag has been largely eliminated, by increasing the
active shear moment that occurs earlier in the bend, in
phase with the viscous resistances. The phase lag is not
completely eliminated, because it results in part from
switching the direction of active shear at + /-K0 rather
than when the curvature is 0.
The second row of Fig. 7 shows curves of shear angle

along the length of the flagellar model. At high viscosities,
the pattern of bend initiation at the basal end becomes
modified, and approaches a situation where there is only
one developing bend at the base at any time in the cycle,
rather than two bends growing in angle at equal and
opposite rates. As a result, the shear generated during bend
development is added to the shear associated with propa-
gating bends in the distal portion of the flagellum, and
there is no longer a uniform propagation of waves of shear
that can be described by Eq. 9. This change can occur
because at high viscosities the shear rates are reduced so
that active shear moment becomes nearly independent of
shear rate, as discussed in the previous paragraph.
The wavelength mode preferences can be overriden by

forcing the model to oscillate at a predetermined frequen-
cy. One way to do this is to switch the direction of the
active shear system in the first active segment (segment 2)
at the base of the flagellum at predetermined times, and to
increase the magnitude of active shear moment generated
in this segment to a value of 10 mi. Using this procedure
and a value of EB = 1.2 x 108 pN nm2, at a relative
external viscosity of 8, it is possible to vary the wavelength
continuously from 18 to 10 j,m, by imposing frequencies
varying from 13 to 34 Hz. Figure 5 d shows an example of
the movement obtained in this case, using a frequency of
16.5 Hz, which results in a wavelength of - 16,um and -2.5
complete bending waves on the flagellum. This waveform
is clearly intermediate between the free-running wave
modes shown in Figs. 5 a and b. Using this procedure, it is
also possible to obtain a continuous decrease in wavelength
as the viscosity is increased by specifying either a constant
frequency or a frequency that decreases in a realistic
manner with increasing viscosity (Fig. 6 b).

DISCUSSION

Operation at 0 Viscosity
Flagella normally operate in an environment where viscous
resistances of the fluid are significant. A model operating
at 0 viscosity may be relevant to situations where flagella
generate normal-looking bending waves at very low beat
frequencies (Brokaw, 1966; 1975a).
The model examined here demonstrates that bend

propagation by curvature-controlled flagellar models is not
dependent upon interaction with the viscous resistance of
the surrounding fluid environment. Bending wavelengths

similar to those encountered with real flagella are gener-
ated by this model when realistic values for the parameters
are inserted. The value of EB/Mo used for the computation
shown in Fig. 1 is based on realistic estimates of flagellar
bending resistance (Okuno, 1980) and mA (Brokaw,
1975b; 1982). Typical values reported for the wavelength
and frequency of live sea urchin spermatoza are 30,um and
30 Hz (Brokaw, 1965).

Mode Preferences at High Viscosities
At high viscosities, this flagellar model, like previous
models, develops a preference for discrete wavelength
modes (Brokaw, 1972c; Brokaw and Rintala, 1975; Hines
and Blum, 1978). Since real flagella do not show such
strong mode preferences, it is important to understand why
the model shows this behavior.

Although no attempt has been made to demonstrate the
existence of a frequency-wavelength map such as Fig. 3 for
models operating in the presence of external viscosity, it
seems reasonable to describe the behavior of the model by
saying that the selection of a particular operating point at
low viscosities by the conditions of bend initiation is
replaced at high viscosities by selection of a particular
operating point by the preference for particular wavelength
modes. This is associated with a major change in the
pattern of bend initiation at the basal end of the model.
At low viscosities, where the elastic bending resistance is

the primary resistance that must be balanced by active
shear moment, the distribution of bending moment along
the flagellum closely matches the propagated bending
waves (Fig. 7). At high viscosities, the bending moment
required to balance viscous resistances becomes a domi-
nant part of this bending moment distribution (Fig. 7). The
bending moments resulting from viscous resistances must
be large in the interior portions of the flagellum and must
approach 0 at each end of a freely swimming flagellum.
The problem of satisfying these boundary conditions at the
ends of the flagellum has been recognized and discussed
previously (Brokaw, 1970, 1971). It was previously sug-
gested that nonuniformities in bend propagation would be
required in a curvature-controlled flagellum to satisfy
these boundary conditions. The flagellar models actually
solve this problem differently. They take advantage of the
degree of freedom represented by the frequency-wave-
length map of Fig. 3 to select operating wavelengths giving
integral numbers of bends on the flagellum, so that the
active bending moment, obtained by integrating the active
shear moment along the length of the flagellum, will be 0
at the base of the flagellum. At high viscosities, where the
active shear moment is independent of shear rate and is
therefore determined entirely by the curvature-control
specification, a uniform, symmetrical bending wave will
generate equal amounts of active shear moment in each
direction, and the integrated active bending moment over
one full wave will be 0 (Fig. 7).
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Viscosity-Independence of the Wavelength
In the series of computations summarized by Figs. 6 a and
7, the beat frequency decreases enough so that there is no
change in wavelength over a wide range of viscosities. This
behavior contrasts with the behavior of real flagella and
with the behavior of the curvature-controlled models
examined earlier (Brokaw, 1972c; Hines and Blum, 1978).
With the previous models, the wavelength changed to
progressively lower modes, with a greater number of
complete waves on the flagellum, as the viscosity was
increased. The difference between the behavior of the
model discussed here and the previous models is probably
due to the time delay that was explicitly included in the
control loop of the previous models. Hines and Blum
(1978) pointed out that the equations that they used for
solving the balance of moments could be expressed in
dimensionless form in which the viscosity appeared only as
the ratio of drag coefficients, CN/CL, or as a ratio between
CN and the time constant that they used to delay the active
shear moment. Computations with curvature-controlled
models containing an explicit time delay show that there is
no change in wavelength with viscosity if the ratio between
the time delay and the viscosity is kept constant (data not
shown). These considerations suggest that if the mecha-
nism of oscillation in real flagella is anything like the
curvature-controlled models that have been examined,
then the mechanism in real flagella must contain a time
delay that remains approximately constant as the viscosity
is increased.

Conclusion
The fundamental idea of this analysis is that flagellar
bending represents the solution of a moment balance
equation containing active bending moment resulting from
a specification of the activity of an active shear process by
feedback from a parameter such as the curvature of the
flagellum. Concern about the strong wavelength mode
preferences exhibited by flagellar models of the type
examined here has led to previous suggestions that this
approach might be inapplicable to real flagella (Brokaw,
1980). The most important new understanding presented
here is that controlling the active shear process by curva-
ture does not fully determine the operating parameters of
this type of flagellar model, but only determines a curve of
possible combinations of frequency and wavelength that
will satisfy the moment balance equation. Some other
conditions, such as the details of bend initiation at the basal
end of the flagellum when the model is operating at low
viscosity or the preference for wavelength modes that
facilitate satisfaction of the boundary condition for 0 active
moment at the basal end when the model is operating at
high viscosity, will determine the solution that is chosen. It
is also possible to override these conditions by driving the
flagellar model at a particular frequency, in which case the

wavelength will be determined by the moment balance
equation and will decrease smoothly with increasing viscos-
ity (Rikmenspoel, 1982). The observation that real flagella
do not show the pronounced wavelength mode preferences
that are seen with these models therefore does not elimi-
nate these models as candidates for the mechanisms in real
flagella, but does suggest that other properties are required
to explain how real flagella select a particular operating
point. The idea that real flagella contain a mechanism that
predetermines a particular frequency, such as the model
that produced the results in Fig. 5 d and 6 b or the more
complicated model examined by Rikmenspoel (1982) is
difficult to reconcile with the effect of viscosity on reducing
the oscillation frequency of flagella (e.g., Brokaw, 1966;
Rikmenspoel, 1984). The manner in which real flagella
resolve this problem remains to be determined.
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